75+3y^2-150+70=0

Simple and best practice solution for 75+3y^2-150+70=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 75+3y^2-150+70=0 equation:



75+3y^2-150+70=0
We add all the numbers together, and all the variables
3y^2-5=0
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $

See similar equations:

| -2+-3j=4 | | 0=3x(20x-29) | | 5^x=125^2x+6 | | 20+30x=10x+4.500 | | Y=0.0059x+1.007 | | 141+c=342 | | 20+30x=10x+4.5000 | | j+4=11 | | 2y=21+(-5) | | 2z-7.1=9.8 | | 8x-3+106=180 | | 6-6=n+2 | | 11-u=18 | | 20=k+16 | | 1/4n+7/4=5n-7n+1 | | 4(u-5)=7u+7 | | 8+s=18 | | -3x+1.8=6x+14.4 | | c^-10c=0 | | u/2-13=21 | | 13+c=18 | | 125=25^-x=4 | | 20=2x=70 | | 5x-10-60=180 | | 1.75z-3.75=-9 | | 3(a+5)-2(2a+1)=0 | | x+76=360 | | 10+7x=360 | | 1/2((15x+5)-(6x+14))=3x+9 | | -4x-17=-11 | | 3(2x+9)=8x+14-2x+13 | | 5=75+x |

Equations solver categories